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Motivation
• Add beam diagnostics capability, providing previously 

unknown measurements of accelerator such as thermal 
imaging and radiation measurements

• Provide test bed for fully autonomous mode for mobile 
robot, proving feasibility for autonomy

http://www.unm.edu/index.html
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Background
• Autonomous Mobile Robots

– Motion
– Sensor perception
– Localization

• Environment: structured/unstructured
• Map type: feature/grid/topological
• Landmark density

– Navigation
– Obstacle avoidance

• LANSCE linear accelerator facility, 800 MeV proton beam
– ¾ mile long LINAC
– Radiation produced by proton interactions

K.F. Schoenberg and P.W. Lisowski, “LANSCE A Key Facility for National Science and Defense,” Los Alamos Science, 
no. 30, 2006.

http://www.unm.edu/index.html
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Vehicle Model
• Chassis

– Sensors
• Inverse Kinematics

– Constraints
– Model

• Odometry
– Position estimation using motor encoders

http://www.unm.edu/index.html
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Robot Chassis
• Dr. Robot Chassis

– Tracked differential drive
– Two 24V, 2.75A DC motors coupled with magnetic encoders
– H 7” X W 21” X L 25.2”

http://www.unm.edu/index.html
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Sensors
• Hokuyo URG-04LX-UG01 LIDAR

– 4m, 240°sensor detectable range
– 0.36°angular resolution
– 10 Hz scan rate
– Simulation suite contains Hokuyo LIDAR model

• Magnetic Encoders
– Simulated sensors output angular position

Kamitani, Maeda, Mori, and Yamamoto, “Scanning Laser Range Finder URG-04LX-UG01 Specifications,” Hokuyo 
Automatic Co. LTD, June 2009.

http://www.unm.edu/index.html
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Inverse Kinematics: Constraints
• Track velocity

𝑣𝑣𝑅𝑅
𝑣𝑣𝐿𝐿 = 𝑟𝑟�̇�𝜑𝑅𝑅

𝑟𝑟�̇�𝜑𝐿𝐿

• Lateral motion limitation

𝑊𝑊 𝑋𝑋 �̇�𝑋 = sin𝜃𝜃 − cos 𝜃𝜃 0
�̇�𝑥
�̇�𝑦
�̇�𝜃

= 0;

A. Kelly, Mobile Robotics Mathematics, Models, and Methods, Cambridge University Press, 2014. 

R. Dhaouadi and A.A. Hateb, “Dynamic Modelling of Differential Drive Mobile Robots using Lagrange and Newton-Euler 
Methodologies: A Unified Framework,” Advances in Robotics and Automation, vol. 2, 2013.

http://www.unm.edu/index.html
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Inverse Kinematics: Model
• Motor velocity function

̇𝜑𝜑𝑅𝑅 , ̇𝜑𝜑𝐿𝐿 = 𝑓𝑓(�̇�𝑥, �̇�𝑦, �̇�𝜃,𝑔𝑔, 𝑟𝑟, 𝑙𝑙)

• Robot frame to track velocity

𝑣𝑣𝑅𝑅
𝑣𝑣𝐿𝐿 =

�̇�𝑦 + �̇�𝜃
𝑙𝑙
2

�̇�𝑦 − �̇�𝜃
𝑙𝑙
2

=
1

𝑙𝑙
2

1 −
𝑙𝑙
2

�̇�𝑦
�̇�𝜃

• Track to motor angular velocities

�̇�𝜑𝑅𝑅
�̇�𝜑𝐿𝐿

=
𝑔𝑔
𝑣𝑣𝑅𝑅
𝑟𝑟

𝑔𝑔
𝑣𝑣𝐿𝐿
𝑟𝑟

Where:
�̇�𝜑 = motor angular velocity
r = cog radius
g = gear ratio
l = track distance

A. Kelly, Mobile Robotics Mathematics, Models, and Methods, Cambridge University Press, 2014.

http://www.unm.edu/index.html


The University of New Mexico

12

Odometry: Displacement
• Track Displacement

∆𝑠𝑠𝑟𝑟
∆𝑠𝑠𝑙𝑙

=

𝑟𝑟𝜑𝜑𝑟𝑟
𝑔𝑔 𝑛𝑛

− 𝑟𝑟𝜑𝜑𝑟𝑟
𝑔𝑔 𝑛𝑛−1

𝑟𝑟𝜑𝜑𝑙𝑙
𝑔𝑔 𝑛𝑛

− 𝑟𝑟𝜑𝜑𝑙𝑙
𝑔𝑔 𝑛𝑛−1

• Track to robot frame displacement

∆𝑠𝑠 =
∆𝑠𝑠𝑟𝑟 + ∆𝑠𝑠𝑙𝑙

2
∆𝜃𝜃 =

∆𝑠𝑠𝑟𝑟 − ∆𝑠𝑠𝑙𝑙
2𝑙𝑙

R. Siegwart and I.R. Nourbakhsh, Introduction to Autonomous Mobile Robotics, Cambridge, Massachusetts: MIT Press, 
2004.

http://www.unm.edu/index.html
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Odometry: Cartesian Displacement
• Robot frame to Cartesian coordinates

∆𝑥𝑥
∆𝑦𝑦
∆𝜃𝜃

=

∆𝑠𝑠 ∗ cos 𝜃𝜃 +
∆𝜃𝜃
2

∆𝑠𝑠 ∗ sin 𝜃𝜃 +
∆𝜃𝜃
2

∆𝑠𝑠𝑟𝑟 − ∆𝑠𝑠𝑙𝑙
2 ∗ 𝐿𝐿

• ICR offset correction
𝑥𝑥
𝑦𝑦
𝜃𝜃

=
𝑥𝑥𝑛𝑛−1 + 𝑑𝑑 cos 𝜃𝜃 𝑛𝑛 − 𝑑𝑑 cos 𝜃𝜃 𝑛𝑛−1

𝑦𝑦𝑛𝑛−1 + 𝑑𝑑 sin𝜃𝜃 𝑛𝑛 − 𝑑𝑑 sin𝜃𝜃 𝑛𝑛−1
𝜃𝜃

J.L. Crowley and P. Reignier, “Asynchronous Control of Rotation and Translation for a Robot Vehicle,” Journal of 
Robotics and Autonomous Systems, Feb. 1993.

http://www.unm.edu/index.html
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Landmark Acquisition

• Landmark selection
• Line extraction

– Successive Edge Following
– Split and Merge

• Feature extraction
– Corner feature extraction
– Beam structure feature extraction
– Wall feature extraction

http://www.unm.edu/index.html
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Line Extraction

• LIDAR point cloud raw scan
• Remove extraneous points
• Successive Edge Following
• Split-and-Merge

http://www.unm.edu/index.html
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Successive Edge Following

• Euclidean distance between adjacent points
𝐷𝐷 𝑖𝑖, 𝑖𝑖 + 1 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+1 2 𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖+1 2

• Adaptive threshold

�̅�𝑟 =
∑𝑖𝑖=1𝑛𝑛 𝑟𝑟𝑖𝑖
𝑛𝑛

; ∆𝐷𝐷 = 𝑘𝑘�̅�𝑟

• Segmentation criteria

𝑓𝑓 𝑘𝑘; 𝑗𝑗; 0,1 = �𝐷𝐷 𝑖𝑖, 𝑖𝑖 + 1 < ∆𝐷𝐷; 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑗𝑗 + 1
𝐷𝐷 𝑖𝑖, 𝑖𝑖 + 1 ≥ ∆𝐷𝐷; 𝑘𝑘 + 1, 𝑗𝑗 = 0

A. Siadat, A. Kaske, S. Klausmann, M. Dufaut, and R. Husson, “An Optimized Segmentation Method for a 2D Laser 
Scanner Applied to Mobile Robot Navigation,” In Proceedings of the 3rd IFAC Symposium on Intelligent Components 
and Instruments for Control Applications, 2007.

Y. Bu, H. Zhang, H. Wang, R. Liu, and K. Wang, “Two Dimensional Laser Feature Extraction Based on Improved 
Successive Edge Following,” Applied Optics, May 2015.

http://www.unm.edu/index.html
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Split and Merge

• Perpendicular distance

𝑝𝑝𝑝𝑝𝑟𝑟𝑝𝑝.𝑑𝑑𝑖𝑖𝑠𝑠𝑑𝑑. =
𝑦𝑦2 − 𝑦𝑦1 𝑥𝑥0 − 𝑥𝑥2 − 𝑥𝑥1 𝑦𝑦0 + 𝑥𝑥2𝑦𝑦1 − 𝑦𝑦2𝑥𝑥1

𝑦𝑦2 − 𝑦𝑦1 2 𝑥𝑥2 − 𝑥𝑥1 2

V. Ngyen, A. Martinelli, N. Tomatis, and R. Siegwart, “A Comparison of Line Extraction Algorithms using 2D Laser 
Rangefinder for Indoor Mobile Robotics,” In Proceedings of Conference on IROS 2005, Edmonton, Canada, 2005.

M. Namoshe, O. Matsebe, and N. Tlale, “Feature Extraction: Techniques for Landmark Based Navigation System,”
Intech, 2010.

http://www.unm.edu/index.html
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Landmark Selection

• Repeatable, accurate, unique, static, and frequent

• Corner feature extraction
– Orthogonality check

• Beam structure feature extraction
– I-Beam

• Wall extraction
– Robot bearing
– Abbe error minimization

http://www.unm.edu/index.html
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Corner Feature Extraction
• Orthogonality check, 𝜃𝜃 found by dot product

𝑙𝑙𝑛𝑛 ⋅ 𝑙𝑙𝑛𝑛+1 = 𝑙𝑙𝑛𝑛 𝑙𝑙𝑛𝑛+1 cos 𝜃𝜃

𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠
𝑙𝑙𝑛𝑛 ⋅ 𝑙𝑙𝑛𝑛+1
𝑙𝑙𝑛𝑛 𝑙𝑙𝑛𝑛+1

; 1.54 𝑟𝑟𝑎𝑎𝑑𝑑 ≤ 𝜃𝜃 ≤ 1.6 𝑟𝑟𝑎𝑎𝑑𝑑

• Line-Line intersection defined by determinants

𝑋𝑋𝑥𝑥 =
𝑥𝑥1𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 𝑥𝑥3 − 𝑥𝑥4 − 𝑥𝑥1 − 𝑥𝑥2 𝑥𝑥3𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4

𝑥𝑥1 − 𝑥𝑥2 𝑦𝑦3 − 𝑦𝑦4 − 𝑦𝑦1 − 𝑦𝑦2 𝑥𝑥3 − 𝑥𝑥4

𝑋𝑋𝑦𝑦 =
𝑥𝑥1𝑦𝑦2 − 𝑦𝑦1𝑥𝑥2 𝑦𝑦3 − 𝑦𝑦4 − 𝑦𝑦1 − 𝑦𝑦2 𝑥𝑥3𝑦𝑦4 − 𝑦𝑦3𝑥𝑥4

𝑥𝑥1 − 𝑥𝑥2 𝑦𝑦3 − 𝑦𝑦4 − 𝑦𝑦1 − 𝑦𝑦2 𝑥𝑥3 − 𝑥𝑥4
M. Namoshe, O. Matsebe, and N. Tlale, “Feature Extraction: Techniques for Landmark Based Navigation System,”
Intech, 2010.

http://www.unm.edu/index.html
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Beam Structure Feature Extraction

• Collinearity
𝐴𝐴𝐴𝐴 + 𝐴𝐴𝐵𝐵 + 𝐵𝐵𝐷𝐷 = 𝐴𝐴𝐷𝐷

• Length approximated, and 
midpoint is interpolated between 
line segments as landmark 
location

http://www.unm.edu/index.html
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Wall Feature Extraction

• Abbe error accumulates over long distances
• Long, observable, unobstructed wall in beam tunnel
• Validation gates

– World map position, must be greater than 3m from robot origin
– Minimum 2m unbroken segment length

• Robot bearing calculated
𝜃𝜃 = 𝑎𝑎𝑑𝑑𝑎𝑎𝑛𝑛2(𝑦𝑦2 − 𝑦𝑦1, 𝑥𝑥2 − 𝑥𝑥1)

http://www.unm.edu/index.html
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Localization

• Extended Kalman Filter
– Linearizes state transition 

and measurement models
– Map based estimator
– Comprised of three steps:

• Motion Update
• Data Association
• Measurement Update

http://www.unm.edu/index.html
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EKF: Initialization

• State Matrix

𝑋𝑋 =

𝑥𝑥𝑟𝑟
𝑦𝑦𝑟𝑟
𝜃𝜃𝑟𝑟
𝑥𝑥𝑖𝑖
𝑦𝑦𝑖𝑖

• Estimation Covariance Matrix P
– 3+2n x 3+2n Identity matrix
– Initially independent

S. Riisgaard and M.R. Blas, “Slam for Dummies,” A Tutorial Approach to Simultaneous Localization and Mapping, vol. 
22, June, pp. 1-127, 2004.

http://www.unm.edu/index.html
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Motion Update: State Transition
• Predicted State Transition Matrix

𝑓𝑓 𝑋𝑋,𝑢𝑢 = 𝑋𝑋𝑡𝑡+1− =
𝑥𝑥 + ∆𝑥𝑥
𝑦𝑦 + ∆𝑦𝑦
𝜃𝜃 + ∆𝜃𝜃

=
𝑥𝑥 + ∆𝑠𝑠 𝑎𝑎𝑎𝑎𝑠𝑠𝜃𝜃
𝑦𝑦 + ∆𝑠𝑠 𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃
𝜃𝜃 + ∆𝜃𝜃

• Jacobian State Transition Matrix

𝐹𝐹 = 𝐽𝐽𝑓𝑓 𝑥𝑥,𝑦𝑦,𝜃𝜃 =

𝛿𝛿𝑋𝑋1
𝛿𝛿𝑥𝑥

𝛿𝛿𝑋𝑋1
𝛿𝛿𝑦𝑦

𝛿𝛿𝑋𝑋1
𝛿𝛿𝜃𝜃

𝛿𝛿𝑋𝑋2
𝛿𝛿𝑥𝑥

𝛿𝛿𝑋𝑋2
𝛿𝛿𝑦𝑦

𝛿𝛿𝑋𝑋2
𝛿𝛿𝜃𝜃

𝛿𝛿𝑋𝑋3
𝛿𝛿𝑥𝑥

𝛿𝛿𝑋𝑋3
𝛿𝛿𝑦𝑦

𝛿𝛿𝑋𝑋3
𝛿𝛿𝜃𝜃

=
1 0 −𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃∆𝑠𝑠
0 1 𝑎𝑎𝑎𝑎𝑠𝑠𝜃𝜃∆𝑠𝑠
0 0 1

=
1 0 −∆𝑦𝑦
0 1 ∆𝑥𝑥
0 0 1

• Process Noise

𝑄𝑄 = 𝑊𝑊𝐵𝐵𝑊𝑊𝑇𝑇 =
𝐵𝐵 ∆𝑥𝑥2 𝐵𝐵 ∆𝑥𝑥∆𝑦𝑦 𝐵𝐵 ∆𝑥𝑥∆𝜃𝜃
𝐵𝐵 ∆𝑦𝑦∆𝑥𝑥 𝐵𝐵 ∆𝑦𝑦2 𝐵𝐵 ∆𝑦𝑦∆𝜃𝜃
𝐵𝐵 ∆𝜃𝜃∆𝑦𝑦 𝐵𝐵 ∆𝜃𝜃∆𝑦𝑦 𝐵𝐵 ∆𝜃𝜃2

; 𝑤𝑤𝑤𝑝𝑝𝑟𝑟𝑝𝑝 𝑊𝑊 =
∆𝑥𝑥
∆𝑦𝑦
∆𝜃𝜃

S. Riisgaard and M.R. Blas, “Slam for Dummies,” A Tutorial Approach to Simultaneous Localization and Mapping, vol. 
22, June, pp. 1-127, 2004.

L. Chen, H. Hu, and K. McDonald-Maier, “EKF Based Mobile Robot Localization,” Emerging Security Technologies 
(EST) Third Internationl Conference, Sept. 2012.

http://www.unm.edu/index.html


The University of New Mexico

25

Motion Update: Error Covariance

• Robot Estimation Error Covariance
𝑃𝑃𝑟𝑟𝑟𝑟 = 𝐹𝐹𝑃𝑃𝐹𝐹 + 𝑄𝑄

• Robot-Landmark Estimation Error Covariance
𝑃𝑃𝑟𝑟𝑖𝑖 = 𝐹𝐹𝑃𝑃𝑟𝑟𝑖𝑖

• Estimation Error Covariance Matrix
𝑃𝑃 = 𝑃𝑃𝑟𝑟𝑟𝑟 𝑃𝑃𝑟𝑟𝑖𝑖

𝑃𝑃𝑖𝑖𝑟𝑟 𝑃𝑃𝑖𝑖𝑖𝑖
;𝑤𝑤𝑤𝑝𝑝𝑟𝑟𝑝𝑝 𝑃𝑃𝑖𝑖𝑖𝑖 𝑖𝑖𝑠𝑠 𝑙𝑙𝑎𝑎𝑛𝑛𝑑𝑑𝑎𝑎𝑙𝑙𝑎𝑎𝑟𝑟𝑘𝑘 𝑎𝑎𝑎𝑎𝑣𝑣𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑛𝑛𝑎𝑎𝑝𝑝

N.A. Othman and H. Ahmad, “The Analysis of Covariance Matrix for Kalman Filter Based SLAM with Intermittent 
Measurement,” Proceedings of the 2013 International Conference on Systems, Control and Informatics, 2013.

http://www.unm.edu/index.html
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Data Association

• Individual Compatibility Nearest Neighbor
– Uses Mahalonobis Distance and Chi-Squared distribution for compatibility
– Mahalonobis distance accounts for covariance between variables, directional 

variance, and reduces to Euclidean distance if uncorrelated

• Compatibility Optimization
– Reconsiders associations, if there are more than one possible hypothesis
– Chooses “best” hypothesis

P.C. Mahalanobis, “On the Generalized Distance in Statistics,” In Proceedings of the National Institute of Sciences of 
India, vol. 2, 1936.

http://www.unm.edu/index.html
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ICNN: Measurement Model

• Range/Bearing Measurement Model

𝑤 =
𝑟𝑟𝑎𝑎𝑛𝑛𝑔𝑔𝑝𝑝
𝑏𝑏𝑝𝑝𝑎𝑎𝑟𝑟𝑖𝑖𝑛𝑛𝑔𝑔 =

𝜆𝜆𝑥𝑥 − 𝑥𝑥 2 + 𝜆𝜆𝑦𝑦 − 𝑦𝑦 2

tan−1
𝜆𝜆𝑦𝑦 − 𝑦𝑦
𝜆𝜆𝑥𝑥 − 𝑥𝑥

− 𝜃𝜃

• Jacobian of Measurement Model

𝐻𝐻 =

𝛿𝛿𝑟𝑟
𝛿𝛿𝑥𝑥

𝛿𝛿𝑟𝑟
𝛿𝛿𝑦𝑦

𝛿𝛿𝑟𝑟
𝛿𝛿𝜃𝜃

𝛿𝛿𝑏𝑏
𝛿𝛿𝑥𝑥

𝛿𝛿𝑏𝑏
𝛿𝛿𝑦𝑦

𝛿𝛿𝑏𝑏
𝛿𝛿𝜃𝜃

=

𝑥𝑥 − 𝜆𝜆𝑥𝑥
𝑟𝑟

𝑦𝑦 − 𝜆𝜆𝑦𝑦
𝑟𝑟

0

𝜆𝜆𝑦𝑦 − 𝑦𝑦
𝑟𝑟2

𝜆𝜆𝑥𝑥 − 𝑥𝑥
𝑟𝑟2

−1

Where, (𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦) are 
landmark locations

T.Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot, “Consistency of the EKF-SLAM Algorithm,” Proceedings of the 
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2006.
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ICNN: Validation Gate
• Innovation 𝜇𝜇, where z is LIDAR measurement

𝜇𝜇 = 𝑧𝑧 − 𝑤
• Measurement Noise

𝑅𝑅 = 𝑟𝑟𝑎𝑎 0
0 𝑏𝑏𝑑𝑑

• Innovation Covariance
𝑆𝑆 = 𝐻𝐻𝑃𝑃𝐻𝐻𝑇𝑇 + 𝑅𝑅

• Mahalonobis Distance
𝐷𝐷𝑖𝑖𝑖𝑖2 = 𝜇𝜇𝑇𝑇𝑆𝑆−1𝜇𝜇

• Chi-squared Distribution Validation Gate, with two degrees of freedom and 
95% cumulative probability

𝐷𝐷𝑖𝑖𝑖𝑖2 < 𝜒𝜒𝑑𝑑,𝛼𝛼
2

P.C. Mahalanobis, “On the Generalized Distance in Statistics,” In Proceedings of the National Institute of Sciences of 
India, vol. 2, 1936.

Y. Bar-Shalom and T.E. Fortmann, Tracking and Data Association, Academic Press In., 1988.

J. Neira and J.D. Tardos, “Data Association in Stochastic Mapping using the Joint Compatibility Test,” IEEE 
Transactions on Robotics and Automation, vol. 17, Issue 6, pp 890 – 897, Dec. 2001. 
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Compatibility Optimization

• Reconsiders associations if there is more than one feature 
associated with a single landmark

• Minimum Maholonobis distance is taken to be correct 
feature from set of features considered for single landmark

• Necessary primarily for beam structure features as there 
are multiple in close proximity
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Measurement Update

• Kalman Gain
𝐾𝐾 = 𝑃𝑃−𝐻𝐻𝑇𝑇 𝑆𝑆 −1

• Robot State Update
𝑋𝑋𝑡𝑡+1 = 𝑋𝑋𝑡𝑡+1− + 𝐾𝐾𝜇𝜇

• Error Covariance Update
𝑃𝑃𝑡𝑡+1 = 𝐼𝐼 –𝐾𝐾𝐻𝐻 𝑃𝑃−

• Entire process repeated for each observed and associated feature
S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, Cambridge, Massachusetts: MIT Press, 2006.

H. Durrant-Whyte and T. Bailey, “Simultaneous Localization and Mapping,” IEEE Robotics & Automation, June 2006.

M.R. Nepali, D.A.H. Prasad, S. Balasubramaniam, V. EN, and Ashutosh, “A Simple Integrative Solution for 
Simultaneous Localization and Mapping,” International Journal of Robotics and Automation, vol. 5, Issue 2, 2014.
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LabVIEW Robotics Simulation

• Based on Open 
Dynamics Engine

• CAD importer
• Robot model 

builder
• Environment 

simulator wizard

“Overview of the LabVIEW Robotics Simulator,” National instruments, 22 December 2015, http://www.ni.com/white-
paper/14133/en/
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Simulation Results
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Error Calculation

• Ground Truth Vs. Estimation

𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝑝𝑝 = 𝑥𝑥𝑟𝑟,𝑒𝑒 − 𝑥𝑥𝑔𝑔𝑡𝑡
2 + 𝑦𝑦𝑟𝑟,𝑒𝑒 − 𝑦𝑦𝑔𝑔𝑡𝑡

2

𝐸𝐸𝑟𝑟𝑟𝑟𝑎𝑎𝑟𝑟𝜃𝜃 = 𝜃𝜃𝑟𝑟,𝑒𝑒 − 𝜃𝜃𝑔𝑔𝑡𝑡

L. Chen, H. Hu, and K. McDonald-Maier, “EKF Based Mobile Robot Localization,” Emerging Security Technologies 
(EST) Third Internationl Conference, Sept. 2012.
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Conclusion

• Given ideal conditions, localization of the robot can be 
realized within 0.3 meters and 0.1 radians in heading

• Robot is sensitive to Abbe error, wall was crucial in 
maintaining position without diverging
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Future Work

• Beam tunnel experimentation using robot hardware
– WLAN communication
– Develop FPGA and Real Time code to support localization

• Facilitate full robot autonomy
– Obstacle Avoidance
– Navigation algorithm development

• Research additional diagnostic sensors to maximize the potential for 
providing substantial measurements to physicists
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Thank you

Questions?
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